Wait-time benchmarks for cardiovascular services and procedures

Submitted to the Canadian Wait Time Alliance
Submitted by the CCS Access to Care Working Group

Extract pp 68-87, It's about time!, August 2005

It's about time!
Achieving benchmarks and best practices in wait time management

FINAL REPORT
by the Wait Time Alliance for
Timely Access to Health Care
AUGUST 2005
Executive summary

The Alliance for Timely Access (the Alliance) consists of the Canadian Medical Association (the CMA) and medical specialty societies representing the five priority areas identified by Canada’s First Ministers to improve access to health services. The Alliance has undertaken to establish pan-Canadian wait times, drawing upon appropriate evidence and clinical expertise to establish reasonable benchmarks.

As a member of the Alliance, the Canadian Cardiovascular Society (CCS) was asked to develop wait-time benchmarks for key cardiac services and procedures. In response to that request, the CCS Access to Care Working Group established seven subgroups to develop wait-time benchmarks and urgency categories for the full continuum of adult cardiovascular services and procedures. This report is a consolidation of the final reports prepared by each of the subgroups. The individual subgroup reports will be made available on the CCS website (www.ccs.ca).

The CCS believes that wait lists are an acceptable, and in fact an essential, component of an efficient publicly-funded health care system, but unmanaged wait lists that do not reflect patient need could well be its death knell. The Canadian healthcare system desperately needs national standards and an effective approach to managing wait lists to ensure timely access to care.

Wait lists must be patient focused and based upon measurable encounters with the health system. Ideally, the wait time would be calculated from the onset of symptoms to treatment and rehabilitation. However, in cardiovascular medicine, there is no reliable way to identify the onset of symptoms from health records. Therefore, the measurable wait time begins at the point of first medical contact (e.g., visit to general practitioner or specialist, visit to an emergency room, hospital admission).

The wait time must incorporate access to the specialist, as well as access to the appropriate investigation, invasive or non-invasive. The wait time must include access to definitive treatments such as surgery and percutaneous interventions. Cardiovascular queues must also include newer diagnostic procedures such as electrophysiology testing, newer interventions such as radiofrequency ablation, and access to lifesaving pacemakers and implantable defibrillators. Recognizing that cardiovascular disease is a chronic disease, wait times must include access to chronic disease management programs such as heart failure clinics or rehabilitation and risk factor modification programs.

Prioritization must be need-based, with urgency of access based upon objective criteria aimed at minimizing potential morbidity and mortality on the wait list.

Scope of this report

This report focuses on timely access to cardiovascular services and procedures through the entire continuum of care from consultation and diagnosis to therapeutic procedures to rehabilitation. This approach is consistent with the patient’s overall experience, reflecting the entire wait period for the patient from the onset of symptoms to treatment and to rehabilitation.

There are many different types of cardiovascular disease, including, for example:

- Coronary artery disease, when one or more of the coronary arteries are blocked,
- Valvular disease, when one or more of the valves of the heart are not working properly,
- Chronic heart failure, when the heart is unable to pump a sufficient amount of blood to meet the demands of the body,
- Arrhythmias, when there is a disturbance in the regular rhythm (too slow or too fast) of the heartbeat,
- Congenital heart disease, and
- Diseases of the myocardium, pericardium and great vessels.

Wait-time benchmarks are required for all diagnostic and therapeutic procedures required to treat the range of cardiac diseases. Therefore, the procedures covered in this report include cardiac catheterization, nuclear imaging, electrophysiology (EP) studies, percutaneous coronary interventions (PCI), coronary artery bypass graft (CABG) surgery, valve surgeries, implantation of pacemakers and
implantable cardioverter defibrillators (ICDs), and percutaneous ablations.

Methodology

The CCS Access to Care Working Group established subgroups to develop wait-time benchmarks in seven areas of care. Each subgroup had between six and eight physicians representing various disciplines from across Canada.

To the degree possible, each of the subgroups used the following methodology:
- Identified and recruited appropriate specialists to participate in the subgroup, ensuring representation from the relevant medical subspecialties and respecting Canada’s geography.
- Conducted a literature review on wait times and access to care.
- Conducted a review (if relevant) of existing clinical practice guidelines and wait time and access to care standards.
- Surveyed Canadian centres regarding current wait times.
- Developed and documented a consensus opinion on appropriate wait times.
- Established a secondary review panel (typically a Canadian stakeholder association) to provide additional input on the proposed pan-Canadian wait times.

Where little relevant literature was available, the subgroups ensured that the consensus-building process involved a broad and comprehensive stakeholder group. Forty-nine physicians and related healthcare experts participated as working members within the subgroups to build an initial consensus on wait-time benchmarks. Each subgroup developed a draft report documenting its research, analysis, consensus process and proposed wait time benchmarks. The subgroup’s draft reports were provided to a total of six national societies and associations and individual specialists for a secondary review.

How the benchmarks should be interpreted

These benchmarks are not standards and are not to be interpreted as a line beyond which a healthcare provider or funder has acted with negligence. These benchmarks have been derived by medical experts — cardiovascular specialist physicians — who, using the best evidence available, have determined acceptable wait times from a patient-advocate perspective. These benchmarks do

Table 1: Proposed upper limit for wait-time benchmarks for cardiovascular services and procedures by urgency category

<table>
<thead>
<tr>
<th>Indication</th>
<th>Initial specialist consultation</th>
<th>Cardiac nuclear imaging</th>
<th>Diagnostic catheterization (cath)</th>
<th>Percutaneous coronary intervention (PCI)</th>
<th>Coronary Artery Bypass Graft surgery (CABG)</th>
<th>Valvular Cardiac Surgery</th>
<th>Heart Failure services</th>
<th>Electrophysiology:</th>
<th>Cardiac Rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immediate to 24 hours</td>
<td>1 working day</td>
<td>Immediate to 24 hours</td>
<td>Referral to electrophysiologist</td>
<td>Immediate ³⁵</td>
</tr>
<tr>
<td></td>
<td>1 week</td>
<td>3 working days</td>
<td>3 days</td>
<td>Immediate to 3 days</td>
<td>14 days</td>
<td>14 days</td>
<td>14 days</td>
<td>Pacemaker</td>
<td>7 days</td>
</tr>
<tr>
<td></td>
<td>4 weeks</td>
<td>2 weeks</td>
<td>7 days</td>
<td>14 days</td>
<td>6 weeks</td>
<td>6 weeks</td>
<td>4 weeks</td>
<td>EP testing and Catheter Ablation</td>
<td>30 days</td>
</tr>
<tr>
<td></td>
<td>6 weeks</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td>ICD²</td>
<td>8 weeks</td>
</tr>
<tr>
<td>* ST segment elevation myocardial infarction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Non-ST segment elevation acute coronary syndrome.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡ Implantable cardioverter defibrillator.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ Some patients are identified by the family or referring physician as being extremely depressed and possibly suicidal. Such patients should be managed by emergency or acute care psychiatry.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
not reflect current constraints on the capacity required to meet these benchmarks.

If current wait times were acceptable from the perspective of patients and policy makers, the development of wait-time benchmarks for these services and procedures would not be a healthcare priority today. The physicians who contributed to this document believe that these benchmarks represent a goal towards which we should all be striving to improve access to care and public confidence in our wait list management for cardiovascular services.

Wait-time benchmarks

In Table 1, we present a summary of the wait-time benchmarks as proposed by the subgroups. The wait time shown in the table is the longest benchmark within a particular category. The reader is referred to the body of this report and the individual subgroup reports for a description of the urgency categories and a more detailed breakdown of wait times by indication.

In summary, the CCS feels that no person should have to wait longer than:

- Six weeks for an initial consultation with a cardiologist,
- Fourteen days for diagnostic cardiac nuclear imaging,
- Six weeks for a diagnostic catheterization (when the condition is stable), percutaneous coronary intervention (PCI) for stable conditions, coronary artery bypass graft (CABG) surgery for non-emergent cases, valvular cardiac surgery, pacemaker implant, or heart failure services,
- Twelve weeks for referral to an electrophysiologist, electrophysiological testing or catheter ablation, and
- Thirty days to begin cardiac rehabilitation.

For the most part, the wait times were developed based only on medical evidence, the potential psychological impact on patients and clinical best practice. Limitations to achieving these benchmarks have not been explicitly incorporated into our proposed wait-time benchmarks. Therefore, these benchmarks are felt to be patient based and do not reflect current resource availability.

These wait times are intended as initial guidelines. They are not intended as to be punitive to individuals or processes that lack resources to perform within them. They should be considered as a first step in establishing pan-Canadian standards, based on existing evidence and consensus opinion. As a next step, these benchmarks should be validated through a broader consultation process with clinicians and patients.

1.0 Introduction

The Alliance for Timely Access (the Alliance) consists of the Canadian Medical Association (the CMA) and medical specialty societies representing the five priority areas identified by Canada’s First Ministers to improve access to health services. The Alliance has undertaken to establish pan-Canadian wait times, drawing upon appropriate evidence and clinical expertise to establish reasonable benchmarks.

As a member of the Alliance, the Canadian Cardiovascular Society (CCS) was asked to develop wait-time benchmarks for key cardiac services and procedures. In response to that request, the CCS Access to Care Working Group established seven subgroups to develop wait-time benchmarks and urgency categories for the full continuum of adult cardiovascular services and procedures. This report is a consolidation of the final reports prepared by each of the subgroups. The individual subgroup reports will be made available on the CCS website (www.ccs.ca).

With the recent Supreme Court of Canada decision suggesting Canadians have a right to timely access to care...
in a publicly funded system or other options, this process has taken on even more meaning. The CCS believes that wait lists are an acceptable component of an efficient publicly-funded health care system, but unmanaged wait lists that do not reflect patient need could well be its death knell. The Canadian healthcare system desperately needs national standards for access to care and an effective approach to managing wait lists to ensure timely access to care.

While the First Ministers Agreement (A 10-Year Plan to Strengthen Health Care) identifies five initial areas of focus, we believe that this process can be the genesis of a broader policy approach to measuring, managing and monitoring Canadians’ access to a range of health services.

1.1 Importance of managing the entire continuum of care

The report focuses on timely access to cardiovascular services and procedures through the entire continuum of care from consultation and diagnosis to therapeutic procedures to rehabilitation. This approach is consistent with the patient’s overall experience, reflecting the entire wait period for the patient from the onset of symptoms to treatment and to rehabilitation.

The patient’s journey from the initial onset of cardiac symptoms to rehabilitation is shown graphically in Figure 1. As shown in the figure, there are five major time intervals between the various access points to care and services. Each of these intervals is often made up of smaller waits. For example, the family physician may refer a patient to a cardiologist, but only after receiving test results. Any delay in receiving these tests extends the overall waiting period for the patient.

Although there has been much focus on access to therapeutic procedures (e.g., surgery), the CCS strongly believes that every access point on this continuum of care must have a wait-time benchmark for the following reasons:

- Procedural wait times measure only one of the five waiting periods identified in the figure. The patient’s experience is much longer than this single time interval. Often, the wait for a procedure is one of the shortest waits.
- Further, the typical measure for access to procedures is from the date the procedure is booked (i.e., the decision-to-treat date), and not necessarily the date of the first consultation with the subspecialist. The procedure may be delayed pending the results of other tests (e.g., cardiac catheterization, electrophysiology study).
- Some patients will be referred to more than one specialist. For example, for some cardiac arrhythmias, the patient will first see a family physician, then a cardiologist, who may then refer the patient to an electrophysiologist (i.e., a cardiologist who has further subspecial-

ized in electrophysiology). The wait times to see each physician are additive.
- Any delay along the continuum can result in the patient’s condition becoming more urgent while waiting. As a result, once the need for a procedure is finally identified, the remaining available wait time may be significantly shorter than it would have been with an earlier diagnosis.
- In extreme cases, the patient may short circuit the system by presenting at an emergency department. This tendency creates a reactive response to the patient’s condition and can add an unnecessary burden to an already overtaxed emergency system.
- Figure 1 is meant to be representative of the process, but cannot represent all scenarios. For example, some patients may enter rehabilitation programs on referral from their family physician or prior to any definitive therapeutic procedure.

1.2 Importance of a programmatic or patient centered approach

There are many different types of cardiovascular disease, including, for example:

- Coronary artery disease, when one or more of the coronary arteries are blocked,
- Valvular disease, when one or more of the valves of the heart are not working properly,
- Chronic heart failure, when the heart is unable to pump a sufficient amount of blood to meet the demands of the body,
- Arrhythmia, when there is a disturbance in the regular rhythm (too slow or too fast) of the heartbeat,
- Congenital heart disease, and
- Diseases of the myocardium, pericardium and great vessels.

The urgency of these indications varies significantly; some that can be treated with life style changes or medication, while others are life-threatening and require emergency diagnosis and treatment.

Although cardiac surgery has received much attention over the past ten years or so, many cardiac indications do not require surgery, but do require other diagnostic and therapeutic procedures. The focus on cardiac surgery, while extremely important, must be expanded to these other procedures. Indeed, as shown in Table 1, for every CABG surgery performed, 225 electrocardiograms are performed.

The table also shows that, based on current indications, some services and procedures (e.g., implantable cardioverter defibrillators and rehabilitation services) are provided to only a small proportion of the population for whom the services are clinically indicated. Effectively managing a wait list for a particular cardiovascular service or procedure will cause increased demands elsewhere which also must be managed.
For example, more pacemakers and defibrillators will require more pacemaker and device clinic visits, more noninvasive cardiac testing and more heart failure clinic visits.

Given the breadth of cardiovascular medicine, the huge current and forecasted future demands in our aging population, wait-time benchmarks are required for all diagnostic and therapeutic procedures. Therefore, the procedures covered in this report include cardiac catheterization, nuclear imaging, electrophysiology (EP) studies, percutaneous coronary interventions (PCI), coronary artery bypass graft (CABG) surgeries, valve surgeries, implantation of pacemakers and implantable cardioverter defibrillators (ICDs), and percutaneous ablations.

1.3 How the benchmarks should be interpreted

These benchmarks are not standards and are not to be interpreted as a line beyond which a healthcare provider or funder has acted with negligence. These benchmarks have been derived by medical experts — cardiovascular specialist physicians — who, using the best evidence available, have determined acceptable wait times from a patient-advocate perspective. These benchmarks do not reflect current constraints on the capacity required to meet these benchmarks.

If current wait times were acceptable from the perspective of patients and policy makers, the development of wait-time benchmarks for these services and procedures would not be a healthcare priority today. The physicians who contributed to this document believe that these benchmarks represent a goal towards which we should all be striving to improve access to care and public confidence in our wait list management for cardiovascular services.

2.0 Methodology

The CCS Access to Care Working Group established subgroups to develop wait-time benchmarks in seven areas of care. Each subgroup had between six and eight physicians and recognized health care experts in the related field, representing various disciplines from across Canada. The members of the Working Group are identified in Appendix A. The membership of the seven subgroups is shown in Appendix B.

To the degree possible, each of the subgroups used the following methodology:

- Identified and recruited appropriate specialists to participate in the subgroup, ensuring representation from the affected medical subspecialties and respecting Canada’s geography.
- Conducted a literature review on wait times and access to care.
- Conducted a review (if relevant) of existing clinical practice guidelines and wait time and access to care standards.
- Surveyed Canadian centres regarding current wait times.
- Developed and documented a consensus opinion on appropriate wait times.
- Established a secondary review panel (typically a Canadian stakeholder association) to provide additional input on the proposed pan-Canadian wait times.

In some areas, an extensive literature review had been undertaken recently, and the subgroup’s efforts were limited to updating that work. For many cardiovascular indications (e.g., revascularization, implantation of pacemakers and ICDs, heart failure, rehabilitation), a sufficient body of

<table>
<thead>
<tr>
<th></th>
<th>No. of services provided</th>
<th>No. of patients indicated</th>
<th>No. per 100,000 adult population</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiogram</td>
<td>5,017,200</td>
<td>15,999</td>
<td>2002/03 data*</td>
<td></td>
</tr>
<tr>
<td>Cardiac catheterization</td>
<td>131,277</td>
<td>419</td>
<td>2002/03 data†</td>
<td></td>
</tr>
<tr>
<td>Coronary angioplasty</td>
<td>44,946</td>
<td>143</td>
<td>2002/03 data†</td>
<td></td>
</tr>
<tr>
<td>CABG</td>
<td>22,167</td>
<td>71</td>
<td>2002/03 data†</td>
<td></td>
</tr>
<tr>
<td>Insertion of pacemaker</td>
<td>27,427</td>
<td>87</td>
<td>2002/03 data†</td>
<td></td>
</tr>
<tr>
<td>ICDs (actual)</td>
<td>2,300</td>
<td>74</td>
<td>2003/04 CCS estimate</td>
<td></td>
</tr>
<tr>
<td>ICDs (indicated)</td>
<td>92,000</td>
<td>296</td>
<td>2003/04 CCS estimate</td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>500,000</td>
<td>1,610</td>
<td>2005/06 CCS estimate</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>750,000</td>
<td>2,415</td>
<td>2005/06 CCS estimate</td>
<td></td>
</tr>
</tbody>
</table>

†Some patients are identified by the family or referring physician as being extremely depressed and possibly suicidal. Such patients should be managed by emergency or acute care psychiatry.
evidence exists to support the development of wait-time benchmarks. For other areas, there was little or no relevant published literature to guide deliberations.

Where little relevant literature was available, the subgroups ensured that the consensus-building process involved a broad and comprehensive stakeholder group. Forty-nine physicians and related health care experts participated as working members within the subgroups to build an initial consensus on wait-time benchmarks.

Each subgroup developed a draft report documenting its research, analysis, consensus process and proposed wait-time benchmarks. The subgroup's draft reports were provided to a total of six national societies and associations and individual specialists for a secondary review. See Appendix C for a list of participating organizations and specialists.

For the most part, the wait times were developed based only on medical evidence, the potential psychological impact on patients and clinical best practice. Limitations to achieving these benchmarks have not been explicitly incorporated into our proposed wait-time benchmarks. Therefore, these benchmarks are felt to be patient based and do not reflect current resource availability.

These wait times are intended as guidelines, many of which were developed by consensus and require validation. They will require time to achieve what for many jurisdictions will be ambitious targets. They are not intended to be punitive to individuals or processes that lack resources to perform within them.

These benchmarks are intended to be applied only to clinically-indicated procedures. For all services and procedures, we have determined an urgency category to differentiate the level of risk between clinical conditions. We recognize that it is difficult for a patient to understand that any cardiovascular service is not urgent. The category labels used in this document are not intended to belittle the importance of or need for any procedure. The labels are simply used to distinguish between categories of more or less risk. We feel strongly that the term "elective" is pejorative and, as such, outdated in a patient-centered model of care. The term non-urgent is used in place of the older terminology.

The wait-time benchmarks contained in this report are a first step in establishing pan-Canadian standards, based on existing evidence and consensus opinion. As a next step, these benchmarks should be validated through a broader consultation process with clinicians and patients.

3.0 Wait-time benchmarks

In the following sections, we present wait-time benchmarks for the following services and procedures:

- Diagnostic services and procedures, including:
 - Specialist consultations and non-invasive testing, and
 - Nuclear cardiology.
- Therapeutic services and procedures for the following indications:
 - Acute coronary syndrome (ACS),
 - Coronary artery disease,
 - Valvular disease,
 - Heart failure, and
 - Arrhythmia.
- Cardiac Rehabilitation.

These wait times are only one part of an effective wait-list management system. We believe that the following principles should guide the development and use of any wait list system to ensure timely care for individual patients:

1. Triage categories must be determined based on the risk of waiting to that individual patient, based on the best available science.
2. Once triaged to a specific category, a patient's care should be provided on a first-come first-served basis. Discretionary queue reassignment should not occur.
3. Because most triaging systems rely heavily on patient-reported symptoms, there must be ongoing treatment and surveillance of patients on the waitlist and re-categorizing of those whose symptoms have changed.
4. The waitlist management system and current wait times must be transparent and visible to both the medical profession and the public. Both referring sources and the patients should be informed if the preferred specialist's wait time is longer than waits for other available specialists so they can make an informed decision regarding the choice of specialist.
5. The length of waiting times must be monitored so that appropriate adjustments can be made in capacity.
6. To safely move patients from the “in-house” category to “urgent outpatient”, there must be access to necessary supporting infrastructure in the community.

With the rapid development of cardiac magnetic resonance (MR) and CT scanning, similar clarity on waiting times (and indications) will soon be required for these new and expensive diagnostic procedures.

Notwithstanding the above principles, it is important to appreciate that efficient use of resources dictates that the weekly procedural mix of cases includes patients from all triage categories, not just the most ill or urgent. This is essential to ensure that the system does not develop bottlenecks in intensive care or long-term care facilities that might occur if only very ill patients received services and procedures and to ensure that patients waiting at home are moving up the queue.
3.1 Diagnostic services and procedures

Access to diagnostic services is vitally important to determine the nature and urgency of the patient’s condition. Only after an initial assessment has been performed can the physician determine what services are actually needed, and how long the patient can comfortably wait.

3.1.1. Access to specialist consults and non-invasive tests

The initial diagnosis is typically made (or confirmed) through consultation with a specialist (i.e., cardiologist or general internist), with the support of non-invasive diagnostic tests (e.g., echocardiograph, stress test). Many of these tests can be ordered by either the general practitioner (GP) or the specialist.

The subgroups took the perspective that appropriate waiting times for diagnostic services and procedures are linked to the speed with which the information provided is required to plan or execute therapy. For example, myocardial perfusion imaging (MPI) may be used to determine which patients presenting with unstable coronary syndromes should be advanced urgently for cardiac catheterization. If urgent catheterization should be carried out within eight days, then wait times for urgent MPI must be shorter than eight days for the test to be appropri-

| Table 2: Wait-time benchmarks for hospital-based referral and expedited consultation |
|---|------------------|------------------|------------------|
| Indication | Priority categories | Benchmark | Comment on benchmark |
| **Hospital-based referral and testing** | | |
| Acute coronary syndromes | Known or suspected STEMI or NSTEMI | | |
| Arrhythmias | Hemodynamically significant | | |
| Heart Failure | New onset Class III or IV | | |
| Endocarditis | Known or suspected | | |
| Cardiac tamponade | | | |
| Aortic dissection | | | |
| Pulmonary embolism | Suspected or known but untreated | | |
| Emergent assessment for non-cardiac surgery | With suspected cardiac source | | |
| Embolism | | | |
| Post-cardiac transplantation | With suspected rejection | | |
| Syncope | With prior myocardial infarction or significant left ventricular dysfunction or aortic stenosis | | |
| Prosthetic valve dysfunction | Suspected with hemodynamic compromise | | |
| Hypertensive crisis | | | |
| **Expedited consultation** | | | |
| Atrial fibrillation | Initial onset without associated chest pain and without hemodynamic compromise. | Within 1 week | These indications would be best facilitated by hospital-based evaluation and urgent referral. |
| Supra-ventricular tachycardia | Symptomatic or hemodynamic instability | Within 1 week | |
| Ventricular tachycardia | Asymptomatic | Within 1 week | |
| Angina | Crescendo or initial onset without rest pain | Within 1 week | Rapid assessment chest pain clinic is helpful. |
| CHF | New onset or known with deterioration (ischemic and non-ischemic heart disease) | Within 1 week | Heart function clinics useful in this setting. Early echocardiography by primary care. |
| Syncope | With structural heart disease, family history of sudden death and Wolff Parkinson White Syndrome or other ECG evidence for possible cause | Within 1 week | |
ately used. In each case we have selected the shortest wait times among all indications as the wait-time benchmark for procedures to provide best clinical care.

The CCS subgroup identified three general urgency levels for access to these services:

- Hospital-based referral and testing, where the indications would be best facilitated by hospital-based evaluation and urgent referral. See Table 2 for a list of indications.
- Expedited consultation, including some indications that are best dealt with in an emergency room setting. See Table 2 for a list of indications and associated wait times.
- Outpatient referral. See Table 3 (see page 76) for a list of indications and associated wait times.

The subgroup members felt that all expedited consultations should occur within one week of referral. A consensus opinion emerged that six weeks should be the absolute limit for referral waiting times for the lowest priority indications, including performance of exercise treadmill testing, nuclear imaging and echocardiography, as shown in Table 3.

3.1.2 Nuclear Imaging

Cardiovascular nuclear medicine or nuclear cardiology uses agents labelled with radioisotopes that can be imaged with cameras capable of detecting the gamma photons. These include single photon emission computed tomography (SPECT) and positron emission tomography (PET). In contrast to most other forms of imaging, nuclear imaging tests show the physiological or biological function of the system being investigated rather than the anatomy. In cardiology, nuclear imaging is most often used to examine myocardial perfusion, ventricular function and/or viability.

The Canadian Association of Nuclear Medicine (CANM) is also a member organization of the Alliance and has submitted benchmarks for nuclear imaging. The CCS, through one of its subgroups, reviewed the CANM’s document and confirmed the wait times for nuclear cardiology.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Emergent</th>
<th>Urgent</th>
<th>Non-urgent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial perfusion – Exercise or pharmacologic - SPECT or PET</td>
<td>0</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Myocardial Viability – FDG or thallium</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Radionuclide Angiography (RNA)</td>
<td>1</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>

Note: 0 means within 24 hours of the referring physician’s recommended date of the test.

The CANM chose perfusion imaging and FDG imaging as its benchmarks; therefore, these benchmarks were also used for the CCS report. The wait times for cardiac nuclear imaging are zero to one day for emergent cases, up to three days for urgent cases, and up to 14 days for routine tests, as shown in Table 4.

In non-invasive cardiac imaging, appropriate waiting times are linked to the speed with which the information provided is required to plan or execute other diagnostic tests including angiography and therapies such as PCI and CABG. Wait times, therefore, may contrast with the wait times noted in Radiological Sections for Diagnostic Imaging. Wait times for non-invasive cardiac imaging must be viewed in the clinical context in which the patient presents.

Urgent wait times apply in all conditions where the patient’s clinical status dictates the need for diagnostic information in order to make urgent therapeutic decisions. For example, in patients with acute coronary syndromes in whom nuclear imaging is indicated, testing is considered emergent or urgent in order to identify those patients who would benefit most by further invasive procedures, PCI or CABG during their index hospitalization.

In out-patients with stable cardiac disease in whom nuclear imaging is indicated for diagnosis or risk stratification, non-urgent wait times are reasonable.

Myocardial viability assessment (FDG or thallium imaging) can also be emergent or urgent in critically ill patients with heart failure where decisions need to be made rapidly as to whether a revascularization procedure is indicated. Most cases of viability assessment are semi-urgent or non-urgent investigations. However, data from previous Canadian studies indicate that there is increased mortality when revascularization is delayed more than five weeks after significant viability is defined. Therefore, investigation and prescription of a treatment plan needs to be completed promptly. Hence a benchmark of within 14 days has been determined.

For ventricular function assessment with radionuclide angiography (RNA), appropriate wait times are again best defined by the clinical presentation. In the assessment of pre-chemotherapy, assessment may also be considered urgent (i.e., within three working days of the specified timeframe), required before instituting chemotherapy regimens.

Further discussion and details can be obtained in the CANM submission to the Wait Time Alliance and the report from the CCS Cardiac Nuclear Medicine subgroup report.

3.2 Therapeutic services and procedures

Once an initial diagnosis has been made regarding the underlying cause of the patient’s cardiovascular symptoms,
Table 3: Wait-time benchmarks for outpatient referral and non-invasive testing

<table>
<thead>
<tr>
<th>Indication</th>
<th>Priority categories</th>
<th>Benchmark</th>
<th>Comment on benchmark</th>
<th>Indication-specific treatment-to-wait-time benchmark</th>
<th>Non-invasive testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest Pain</td>
<td>Stable angina</td>
<td>4 weeks</td>
<td>Strongly-positive stress non-invasive test usually requires more urgent invasive testing. Wait time also depends upon professional and psycho-social factors.</td>
<td>ASA, Beta blockers, Lipid lowering medications, Nitrates</td>
<td>Wait time should include the performance of non-invasive tests. Exercise or pharmacological imaging study should be considered in the presence of exercise limitations, resting ECG abnormalities or other confounding factors.</td>
</tr>
<tr>
<td></td>
<td>Atypical chest pain</td>
<td>6 weeks</td>
<td>This limit may not always be appropriate in women for presenting symptoms of serious disease are frequently atypical.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class I or II Heart Failure</td>
<td>Valvular heart disease</td>
<td></td>
<td>Beta blockers</td>
<td></td>
<td>Echocardiography – With this indication, there is evidence to support routine ordering of echocardiography by primary care physicians. This should be performed prior to consultation and within one week of ordering the test.</td>
</tr>
<tr>
<td></td>
<td>With aortic stenosis</td>
<td>2–4 weeks</td>
<td>Depending upon level of symptoms</td>
<td>ACE inhibitors, Statins, ASA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With deterioration</td>
<td>1–2 weeks</td>
<td>Depending upon clinical course</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Without deterioration</td>
<td>4 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy without deterioration in status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic</td>
<td>4 weeks</td>
<td></td>
<td>Common clinical problem effectively handled by many family physicians and internists.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-ischemic</td>
<td>6 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dizziness or syncope</td>
<td>Recurrent syncope</td>
<td></td>
<td>Committee opinions vary widely as nature and consequences of symptomatic episodes must be factored in.</td>
<td>Identify potentially pro-arrhythmic medications, Identify and treat electrolyte disorders, Examine for orthostasis, Institute precautionary measures, Examine for orthostatic hypotension and institute precautionary measures prior to consultation</td>
<td>ECG to be sent with consult. Tests are often best left until after the first direct patient contact with the cardiologist.</td>
</tr>
<tr>
<td>Orthostatic hypotension</td>
<td>6 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Wait-time benchmarks for outpatient referral and non-invasive testing (continued)

<table>
<thead>
<tr>
<th>Indication</th>
<th>Priority Categories</th>
<th>Benchmark</th>
<th>Comment on Benchmark</th>
<th>Indication-specific treatment-to-wait-time benchmark</th>
<th>Non-invasive testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation</td>
<td>Persistent or paroxysmal</td>
<td>6 weeks</td>
<td>Urgent consultation needed with uncontrolled rates</td>
<td>Anticoagulation (except age < 65 with no other stroke risks); if contraindicated, urgent telephone consultation needed. Rate control with calcium channel blockers or beta blockers</td>
<td>Ambulatory ECG only when diagnosis is suspected but not confirmed. Wait time – within total 6 week consult period Echocardiography – Evidence supporting routine pre-referral testing is weak.</td>
</tr>
<tr>
<td>Heart murmurs</td>
<td>First discovery (asymptomatic) or chronic and</td>
<td>6 weeks</td>
<td></td>
<td>Bacterial endocarditis prophylaxis for lesions prone to infection</td>
<td>Chest X-Ray Echocardiography not routinely needed before consultation</td>
</tr>
<tr>
<td>Assessment for non-cardiac surgery</td>
<td>Urgent surgery with known CAD or structural heart disease</td>
<td>Before optimal surgical date</td>
<td>E.g., cancer, unstable vascular disease, abdominal or orthopedic disease</td>
<td>Routine testing is not indicated prior to consultation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>4 weeks</td>
<td>Non-urgent non-cardiac surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palpitation</td>
<td>Including documented episodic supraventricular tachycardia</td>
<td>6 weeks</td>
<td>In the absence of worrisome comorbidities (e.g., syncope or presyncope, LV dysfunction, family history of sudden death)</td>
<td></td>
<td>Attempt symptom-rhythm correlation while waiting for referral and forward results when available.</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>6 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy-related assessment</td>
<td>Pre-pregnancy risk assessment</td>
<td>6 weeks</td>
<td>Management and family counselling before or during pregnancy in adults with congenital heart disease or significant valvular heart disease can be complex and is often best managed through multidisciplinary specialized clinics</td>
<td></td>
<td>Apart from ECG, not indicated prior to consultation</td>
</tr>
<tr>
<td></td>
<td>Pregnancy with known structural heart disease</td>
<td>2 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-specific assessment requests</td>
<td>Referrals not motivated by symptoms or where length of wait is unlikely to add to patient risk or anxiety.</td>
<td>10 weeks</td>
<td>These referrals are those motivated by the family history or other risk factor in absence of symptoms.</td>
<td></td>
<td>It is assumed that identifiable risk factors would be modified during the wait time.</td>
</tr>
</tbody>
</table>

*Known coronary artery or structural heart disease.
the appropriate therapeutic procedure is recommended. The diagnoses that have been examined as part of this work include:

- Acute coronary syndrome (i.e., unstable angina or heart attacks),
- Coronary artery disease (i.e., blockage of one or more coronary arteries),
- Valvular disease,
- Heart failure, and
- Arrhythmias.

For each of these indications, we provide a short description of the disease, the prescribed therapeutic procedures, and the wait-time benchmarks.

3.2.1 Acute coronary syndrome (ACS) — STEMI

Acute coronary syndromes (ACS), myocardial infarction and unstable angina, are amongst the most common causes of hospitalization. ACS is subdivided on the basis of initial presenting ECG into ST elevation (STEMI) and non ST segment elevation acute coronary syndromes (NSTEACS). NSTEACS are further divided by presence of biochemical markers of myocardial necrosis into unstable angina or, if

<table>
<thead>
<tr>
<th>Table 5: Wait-time benchmarks for after STEMI, by indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urgent indication for transfer/cath/PCI</td>
</tr>
<tr>
<td>In candidates for primary* or rescue** PCI.</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In cardiogenic shock who are candidates for revascularization.</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In candidates for surgical repair of ventricular septal rupture or severe mitral regurgitation (MR).</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In patients with persistent ischemic symptoms, hemodynamic and/or electrical instability.</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In patients where there is objective evidence of recurrent myocardial infarction (MI).</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In patients with moderate or severe spontaneous myocardial ischemia during recovery from STEMI.</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In patients with provokable myocardial ischemia during recovery from STEMI.¶</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In patients with LV ejection fraction (LVEF) ≤ .40 vent CHF, or serious ventricular arrhythmias. ¶</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>In patients who had clinical heart failure during the acute episode but subsequently demonstrated well preserved LV function. ¶</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
<tr>
<td>Non-urgent coronary angiography might be considered as part of an invasive strategy after fibrinolytic therapy particularly anterior MI or aborted or near aborted MI.†</td>
</tr>
<tr>
<td>% within benchmark</td>
</tr>
</tbody>
</table>

± Wait time for cath/PCI represents the timeframe in which the evidence suggests the intervention is felt to be beneficial. All evidence supports the best outcomes occur when the optimal targets are achieved.
§ Wait time for CABG is additional wait time after cardiac catheterization.
* Primary PCI implies choice of angioplasty as reperfusion therapy in acute ST segment elevation myocardial infarction (STEMI). The target for primary PCI as preferred reperfusion strategy for AMI is 90% < 90 minutes. When primary angioplasty cannot be reasonably made available within Wait time, then medical jurisdictions should employ every means possible to administer thrombolysis in as timely a manner as possible including in the prehospital setting.

** Rescue PCI implies use of angioplasty when there is evidence of reperfusion failure following fibrinolysis.
¥ Target Time is dependent upon geographic availability of the service but should be minimized to achieve the target benchmark as closely as possible.
† Aborted MI was defined as maximal CK < 2x upper limit of normal combined with typical evolutionary ECG changes. Near aborted MI is defined as maximal CK > 2x upper limit of normal but elevation considered considerably less than expected given extent of ST elevation on presenting ECG.
biomarker positive, non ST segment myocardial infarction (NSTEMI).

Wait-time benchmarks for revascularization after STEMI are shown in Table 5 and for after NSTEACS in Table 6. In addition to the benchmarks, the table also provides target wait times for cath and PCI. In this context, the target wait times are the ideal times to achieve optimal results. The benchmark wait-times in this table represent acceptable times given external constraints (e.g., geography).

3.2.2 NSTEACS (see table 6)

3.2.3 Coronary artery disease

Coronary artery disease (CAD) is caused by the buildup of cholesterol-containing plaques in the walls of the arteries that supply the heart muscle (myocardium). Patients do not generally experience symptoms until 70% or more of the artery is obstructed. Ischemia occurs when the amount of oxygen supplied to the myocardium is insufficient for optimal function, and any damage to the heart muscle can be reversed when oxygen supply is again adequate. Infarction (i.e., heart attack) occurs when the heart muscle suffers irreversible damage from such a blockage which usually has progressed to 100%.

The diagnosis of coronary artery disease is typically confirmed with a cardiac catheterization (cath). Depending on the results of this invasive cardiac test, the patient may require revascularization by either percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery.

Due to public perception that patients were waiting too long for cardiac care (especially CABG), this area of cardiac care has received a considerable amount of attention relative to other indications. Most cardiac surgeries are CABG; the second most common cardiac surgery is for valvular disease. In some cardiac surgeries, the patient requires both CABG and valve surgery combined in one operation.

Wait-time benchmarks for cardiac catheterization and PCI are shown in Table 7 and for CABG in Table 8.

3.2.4 Valvular heart disease

Valvular heart disease occurs when one or more of the valves of the heart are not working properly. Valves may not open completely (stenosis). They may close incompletely (insufficiency). For example, the aortic valve can be affected by a range of diseases that cause it to become leaky or stuck partially closed (i.e., stenotic). Aortic valve replacement currently requires open heart surgery. Valve surgery is performed at the same time as CABG if there are coexisting blockages.

Wait-time benchmarks for valvular surgery are shown in Table 9.

3.2.5 Heart failure (HF)

Chronic heart failure (CHF) is the inability of the heart to pump a sufficient amount of blood to meet the demands of the body. Heart failure is categorized according to the side of the heart (i.e., left versus right heart failure), or whether the problem originates during contraction (systolic heart failure) or relaxation (diastolic).

Chronic HF affects approximately 500,000 Canadians with 50,000 new cases diagnosed per year. The prevalence of HF increases with age such that 1% of Canadians over age 65 and 4% of Canadians over age 70 have HF. In Canada, HF is reaching epidemic proportions with an age-adjusted mortality of 106/100,000, which is greater

<table>
<thead>
<tr>
<th>Risk category</th>
<th>For cardiac cath and PCI</th>
<th>For CABG</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>90% within 24:48 hours</td>
<td>90% within 24:48 hours</td>
</tr>
</tbody>
</table>
| TIMI Risk Score 5-7, Or Persistent or recurrent chest pain Dynamic ECG changes with chest pain CHF, hypotension, arrhythmias with C/P Moderate or high (>5ng/ml) Troponin Rise
| Intermediate risk | 90% within 3-5 days | 90% within 1-2 weeks |
| TIMI Risk Score 3-4, Or NSTEACS with small troponin rise (>1<5ng/ml) Worst ECG T wave inversion or flattening Significant LV dysfunction (EF<40%) Previous documented CAD, MI or CABG, PCI |
| Low risk | 90% within 5-7 days | 90% within 6 weeks |
| TIMI Risk Score 1-2, Or Age < 65 years No or minimum troponin rise (<1.0ng/ml) No further Chest Pain Inducible ischemia ≤ 7 MET’s workload |
than the combined age-adjusted mortality for AIDS and breast cancer.

Wait-time benchmarks for heart failure are shown in Table 10. During the waiting period, it is critically important that the clinical practice guidelines are adhered to.

3.2.6 Arrhythmias

A cardiac arrhythmia is a disturbance in the regular rhythm of the heartbeat. There are two major classes of cardiac arrhythmias:

- **Bradyarrhythmia**: This is a heart rhythm which beats too slowly. Treatment may involve the implant of a pacemaker.
- **Tachyarrhythmia**: This is a heart rhythm which is too fast. Conditions range from the entirely benign to the instantly fatal. Treatment strategies include pharmacotherapy, radiofrequency ablation, and implantable cardioverter defibrillator (ICD) implants.

An electrophysiology (EP) consultation can be obtained for various arrhythmia diagnoses or symptoms. It can be prescribed from a general practitioner, an internist, a cardiologist or cardiac surgeon. After the EP assessment, additional tests can be ordered to support a precise diagnosis or to decide on the final treatment. These special tests will have to be performed according to the outpatient waiting list for each test. At the end, the cumulative waiting time is the total elapsed time from the initial EP reference to the final decision to proceed to an EP study, ablation, pacemaker or ICD implant.

Wait-time benchmarks for an electrophysiology consultation are shown in Table 11.

Permanent pacemaker implantation may be done on either an urgent or semi-urgent basis (i.e., the patient is an inpatient who requires the implant of a permanent pacemaker before the patient can be safely discharged from hospital); or on a non-urgent or elective basis. Most patients requiring pacemakers have sinus node dysfunction, atrial fibrillation with a slow ventricular response, or atrioventricular node disease.

Typically, urgent and semi-urgent patients (non-elective) are admitted to hospital either because their bradyarrhythmia has been symptomatic, or because there is concern that the patient is at high risk for the development of an adverse event. Symptoms may include presyncope, syncope, fatigue, or dyspnea. Adverse events include falls with injury, the development of heart failure, and sudden death.

Wait-time benchmarks for pacemakers are shown in Table 12.

Electrophysiologic studies and catheter ablation are central to the contemporary management of many cardiac arrhythmias. Newer ablation techniques using advanced mapping systems are emerging that permit improved management of previously untreatable arrhythmic conditions.

Catheter ablation is a first-line treatment for many cardiac arrhythmias, including supra-ventricular tachycardia (SVT), atrial flutter and idiopathic forms of ventricular tachycardia (VT). These procedures are routinely performed on an outpatient basis, with very few complications and, in contrast to most pharmacological and surgical therapies in medicine, are typically curative.

Wait-time benchmarks for electrophysiologic testing and catheter ablations are shown in Table 13.

The implantable cardioverter defibrillator (ICD) is accepted as the dominant direct therapy for the primary prevention of sudden death in patients with a demon-

<table>
<thead>
<tr>
<th>Urgency category</th>
<th>Cath PCI</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEMI Primary PCI, Rescue PCI, Shock, Complications</td>
<td>Immediate — 18 hours</td>
<td>Immediate</td>
</tr>
<tr>
<td>Recurrent ischemia</td>
<td>24 hours</td>
<td></td>
</tr>
<tr>
<td>Provocable ischemia/CHF</td>
<td>3 days</td>
<td></td>
</tr>
<tr>
<td>NSTEMI High risk</td>
<td>24–48 hours</td>
<td>Immediate</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>3–5 days</td>
<td></td>
</tr>
<tr>
<td>Low risk</td>
<td>5–7 days</td>
<td></td>
</tr>
<tr>
<td>Stable angina</td>
<td>6 weeks</td>
<td>High risk — 1 week</td>
</tr>
<tr>
<td>Stable valvular heart disease</td>
<td>6 weeks</td>
<td>Semi-urgent — 4 weeks</td>
</tr>
<tr>
<td>High risk (Critical AS)</td>
<td>2 weeks</td>
<td>Others — 6 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urgency category</th>
<th>Target</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency (unrelenting cardiac compromise unresponsive to all therapy except surgery)</td>
<td>< 90 minutes</td>
<td>< 4 hours</td>
</tr>
<tr>
<td>In house urgent (unable to be discharged due to need for intravenous nitroglycerine, heparin, or intra-aortic balloon pump (IABP))</td>
<td>1 day</td>
<td>7 days</td>
</tr>
<tr>
<td>Urgent outpatient</td>
<td>7 days</td>
<td>14 days</td>
</tr>
<tr>
<td>Non-urgent outpatient</td>
<td>6 weeks</td>
<td>6 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urgency category</th>
<th>Target</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency (unrelenting cardiac compromise unresponsive to all therapy except surgery for valvular complications of endocarditis, aortic dissection, myocardial infarction and trauma)</td>
<td>< 4 hours</td>
<td>< 1 day</td>
</tr>
<tr>
<td>Aortic Stenosis – critical with symptoms</td>
<td>14 days</td>
<td>14 days</td>
</tr>
<tr>
<td>Non-urgent Outpatient – all others</td>
<td>6 weeks</td>
<td>6 weeks</td>
</tr>
</tbody>
</table>
strated propensity to, or considered to be at high risk for, life-threatening ventricular tachyarrhythmias. Prevention of sudden death in patients with a history of life-threatening ventricular tachyarrhythmias is termed secondary prevention.

Most patients who have experienced an episode of a life-threatening ventricular tachyarrhythmia are admitted to hospital. In the absence of identification of a reversible or transient cause for the ventricular tachyarrhythmia and in the absence of prohibitive comorbidities, most such patients will receive an ICD during the index hospitalization. These patients should receive their secondary prevention ICD within three working days of the decision to proceed. Most patients identified as being an appropriate candidate for treatment with a primary prevention ICD are outpatients.

Because the purpose of ICD therapy is to prevent sudden death in patients at high-risk of experiencing a life-threatening ventricular tachyarrhythmia, patients who are waiting to receive ICD therapy are at risk of death that would likely have been prevented had the ICD therapy been provided in a timely fashion. To date, there are no published reports detailing the risk of death among patients waiting to receive an ICD.

Wait-time benchmarks for ICDs are shown in Table 14.

Table 10: Wait-time benchmarks for heart failure, by indication

<table>
<thead>
<tr>
<th>Triage category</th>
<th>Examples</th>
<th>Standard</th>
<th>Professional health care provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergent</td>
<td>Acute severe myocarditis
Cardiogenic shock
Transplant evaluation — acutely unstable patient
First episode of Acute Pulmonary Edema
Acute cardiac valvular regurgitation</td>
<td><24 hours</td>
<td>Heart failure specialist (HFS), Disease management program (DMF)</td>
</tr>
<tr>
<td>Urgent</td>
<td>New diagnosis of HF — unstable, decompensated
Progressive Heart Failure
Post MI heart failure
New progression to AHA/ACC class D*
Post hospitalization discharge heart failure</td>
<td><1 week
<2 weeks
<2 weeks
<2 weeks
<2 weeks</td>
<td>HFS, DMP, Cardiologist</td>
</tr>
<tr>
<td>Semi urgent</td>
<td>AHA class C¹
New diagnosis of HF — stable, compensated</td>
<td><4 weeks</td>
<td>HFS, DMP, Cardiologist, Internist</td>
</tr>
<tr>
<td>Non urgent</td>
<td>Chronic HF management
AHA class A¹ and B¹</td>
<td><6 weeks
<6 weeks</td>
<td>GP, Internist, Cardiologist, DMP or HFS</td>
</tr>
</tbody>
</table>

* AHA/ACC class D Patients with advanced structural heart disease and marked symptoms of HF at rest despite maximal medical therapy and who require specialized interventions.
† AHA/ACC class C Patients who have current or prior symptoms of HF associated with underlying structural heart disease. Dyspnea or fatigue due to left ventricular systolic dysfunction; asymptomatic patients who are undergoing treatment for prior symptoms of HF.
‡ AHA/ACC class A Patients at high risk of developing HF because of the presence of conditions that are strongly associated with the development of HF. Such patients have no identified structural or functional abnormalities of the pericardium, myocardium, or cardiac valves and have never shown signs or symptoms of HF. Systemic hypertension, coronary artery disease, glucose intolerance, history of cardiac drug therapy or alcohol abuse, personal history of rheumatic fever, family history of cardiomyopathy.
§ AHA/ACC class B Patients who have developed structural heart disease that is strongly associated with the development of HF but who have never shown signs or symptoms of HF. Left ventricular hypertrophy or fibrosis, left ventricular dilatation or hypococontractility; asymptomatic valvular heart disease, previous myocardial infarction.

Table 11: Wait-time benchmarks for an electrophysiology consultation

<table>
<thead>
<tr>
<th>Urgency category</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergent</td>
<td>Refer to Emergency Room or to EP on duty</td>
</tr>
<tr>
<td>Patients with syncope and structural heart disease (e.g., ejection fraction less than 40%), bundle branch block, hypertrophic cardiomyopathy, congenital heart disease, family history of sudden cardiac death, inherited heart disease)</td>
<td>30 days</td>
</tr>
<tr>
<td>Patients referred for consideration of an ICD implantation (primary prevention) and/or cardiac resynchronization therapy (CRT) device</td>
<td>30 days</td>
</tr>
<tr>
<td>Patients electively referred for an electrophysiologist opinion (e.g., palpitation, supraventricular tachycardia, syncope without structural heart disease, or other medical conditions)</td>
<td>90 days</td>
</tr>
</tbody>
</table>
3.3 Rehabilitation

Cardiovascular disease (CVD) is a chronic disease, one that can be controlled and not, at present, cured. In today’s environment of less invasive interventions and shorter hospital lengths of stay, the needs of patients with chronic CVD are not fully addressed by acute care alone. Good chronic disease management and secondary prevention have become essential elements in contemporary cardiac care. Core elements of CR programs include management of cardiac risk factors, education, individualized exercise programs, nutrition counseling, and psychosocial and vocational counseling.

It is important to clarify the difference between patients who are able to access cardiac rehabilitation services (i.e., a referral is made but they may have to wait to participate in a program, which represents approximately 20% of all eligible patients) and those who are not able to access such services (i.e., no referral is made, which represents approximately 80% of all eligible patients).

Wait-time benchmarks for urgent and semi-urgent cardiac rehabilitation are shown in Table 15 and for outpatient cardiac rehabilitation in Table 16.

Elective referral patients are those who are stable at the time of assessment and who can wait for cardiac rehabilitation without experiencing any significant adverse events. The wait time will likely vary according to the diagnostic category.

The notes below reflect some of the issues that may relate to each diagnostic category. The ‘ideal time’ reflects some of the guidelines used by various programs and reflects the time when optimal benefits should accrue. The ‘benchmark time’ has been set by the expert committee as that time where most of the benefits should be available.

1. Physical issues (sternotomy) may prevent these patients from beginning exercise earlier, but all other aspects of cardiac rehabilitation (CR) could start immediately.
2. These patients tend to return to work and ‘normal duties’ shortly after the procedure.
3. These patients likely need to be seen earlier as there may be more significant medical, vocational and social decisions required.
4. If the cardiac rehabilitation team is seeing the patient for early mobilization post transplant, then the patient needs to be seen as soon as possible. Often these patients may be from out of town.
5. Urgency likely reflects the psychosocial sequelae.

| Table 12: Wait-time benchmarks for pacemakers |
|---|---|
| Urgency category | Benchmark |
| Single and dual Chamber Pacemakers | 1 working day |
| Urgent/semi-urgent* with TTVP | 3 working days |
| Urgent/semi-urgent* with no TTVP | 14 days |
| Non-urgent, with high risk of syncope | 30 days |
| Resynchronization, [biventricular] pacemakers | 6 weeks |
*TTVP= temporary transvenous pacemaker
*In the judgment of the physician, the patient cannot safely leave the hospital until a permanent pacemaker is implanted.

| Table 13: Wait-time Benchmarks for electrophysiologic testing and catheter ablation |
|---|---|
| Urgency category | Benchmark |
| Patients with the Wolff-Parkinson-White syndrome who have rapid atrial fibrillation or syncope | 2 weeks |
| Patients with high-risk arrhythmias due to congenital heart disease or inherited arrhythmia diseases. | 3 months |
| Patients with left ventricular dysfunction who are at risk for, or who have documented, ventricular arrhythmias. | 3 months |

| Table 14: Wait-time Benchmarks for implantable cardioverter defibrillators (from decision to proceed) |
|---|---|
| Urgency category | Benchmark |
| Patients meeting established criteria to receive an ICD who have had a life-threatening episode of ventricular tachycardia (VT)/ventricular fibrillation (VF) for secondary prevention of sudden death. | Within 3 working days |
| Patients meeting established criteria to receive an ICD who have not had a life-threatening episode of VT/VF for primary prevention of sudden death. | Within 8 weeks |

| Table 15: Wait-time benchmarks for cardiac rehabilitation, urgent and semi-urgent patients |
|---|---|---|
| Urgency category | Target | Benchmark |
| Urgent patients | Would show marked deterioration in medical or psychological state if not treated within a very short time frame. | Within 24 hrs* | Within 1–3 days |
| Semi-urgent | Need to be seen within an earlier time frame or they would likely not receive rehabilitation, or significant deterioration (either physical or mental) might occur with any delay. | 24–48 hours | 1 week (depending on circumstances) |

*Some patients are identified by the family or referring physician as being extremely depressed and possibly suicidal. Such patients should be managed by emergency or acute care psychiatry.
4.0 Considerations

Human Resource Issues

This document outlines appropriate wait times for cardiac patients. We cannot currently achieve and maintain these standards in Canada because of the current shortage of physicians, nurses and technologists trained in many sub-specialties (e.g., HF, interventional cardiology, electrophysiology, echocardiography) in Canada.

The increased requirement for human resource requirements is driven by two major factors:

• In many of these professions, we are already experiencing a shortage of needed health care professions, which is causing bottlenecks and unacceptably long wait times for care. We desperately need trained professionals to help clear the backlog and to ensure that the wait lists do not climb again after they have been reduced to an acceptable level.

• For many of these services and procedures (e.g., heart failure clinics, ICDs), the current utilization rate is well below the appropriate rate based on current evidence, which means that many patients who are indicated for this care are not receiving it. Achieving a more appropriate utilization rate will require a significant investment in human resources, as well as in physical resources and supporting infrastructure.

Impact on other medical or non-medical services

These benchmarks have profound implications at all levels within cardiology and the interdisciplinary teams that treat our patients:

• After their procedure, many patients will require repatriation to their community or regional hospitals, which will affect both equipment and personnel requirements.

• The multidisciplinary requirements of disease management program for heart failure patients will involve significant recruitment and training of health care professionals.

• Information transfer and electronic health records will greatly facilitate this process.

At present, urgent and semi-urgent patients are directed to the emergency room for quick assessment and treatment. Successful implementation of these wait-time benchmarks might result in a reduced demand for emergency room services.

Effects if not followed

With diagnostic procedures, when the risk of waiting for the most appropriate diagnostic test exceeds the risk of an alternative though less appropriate testing and treatment strategy, the physician, in consultation with the patient, will choose the latter. Adding the collection of data regarding inappropriate use of technologies would provide a more complete picture of “bottlenecks” in the system and their impact.

Suggestions to meet benchmarks

The collection and posting of wait time data in each jurisdiction for a specific list of services and procedures should be automated through the use of each facility’s information system. This will require the creation of a common procedures list across the country for the selected procedures to allow system management and inter-jurisdictional comparisons against benchmarks. This information will also help to identify areas with surplus capacity (if any) to assist more constrained centres to achieve the wait-time benchmarks.

All facilities that receive public funding should be obligated to provide information regarding wait times and resource information such as staffing, equipment type, numbers and age as a condition of operation.

Most provinces and health regions will find these benchmarks challenging without patient-focused programs at a local, as well regional and provincial level. They will require detailed planning and integration of providers at primary, secondary and tertiary/quaternary levels. Systems will have to explore innovative models of care and physician remuneration models that allow such integrated multidisciplinary triage and care to occur. Wait lists must be managed, and patients in the queue still need to be managed and monitored for any signs of deterioration.
References

Access to initial cardiology consultation
Baker DW, Hayes RP, Massie BM, Craig CA. Variations in family physi-

Bellotti P, Badano LP, Acquarone N et al. Specialty-related differences in the epidemiology, clinical profile, management and outcome of patients hospitalized for heart failure; the OSCUR study. Outcome dello Scompenso Cardiaco in relazione all’Uso delle Risorse.[see comment]. European Heart Journal 2001 April;22(7):596-604.

Dougan JP, Mathew TP, Riddell JW et al. Suspected angina pectoris: a rapid-access chest pain clinic.[see comment]. Qjm 2001 December;94(12):679-86.

Reis SE, Holubkov R, Zell KA, Edmundowicz D, Shapiro AH, Feldman AM. Unstable angina: specialty-related disparities in implementa-

Young W, Rewa G, Goodman SG et al. Evaluation of a community-
based inner-city disease management program for postmyocardial infarction patients: a randomized controlled trial.[see comment]. CMAJ Canadian Medical Association Journal 2003 October 28;169(9):905-10.

Heart failure

Michalsen A, König G, Thimme W. Preventable causative factors leading to hospital admission with decompenated heart failure Heart 1998;80:437-44.

CABG and valve

Cardiac Care Network of Ontario Website: www.ccn.ca
March 2004 CCN Consensus Panel Report on Target Setting:
www.ccn.ca

PCI

Nuclear cardiology
Levels of evidence and grades of recommendation: a guidelines advisory
committee comparison of guidelines developer’s evidence tax-
onomies. Ontario Guidelines Advisory Committee 2003 March 7;Available from: URL:
http://gacguidelines.ca/article.pl?sid=03/03/07/2128213&mode=t-
thread
ACR Appropriateness Criteria Development and Methodology. American College of Radiology 2004;Available from: URL:
http://www.acr.org/ac_pda
Kloekc FJ, et al. ACC/AHA/ASNC Guidelines for the clinical use of card-

Health Services Wait Time Information. Manitoba Health 2004 November 30; Available from: URL:
Wait Time Information. Saskatchewan Surgical Care Network 2004 September 30; Available from: URL:
http://www.saksurgery.ca/wait-list-info.html
Cardiac Care Network of Ontario. Cardiac Care Network of Ontario 2004;Available from: URL: http://www.ccno.ca/
Silberstein EB. Prevalence of adverse reactions to positron emitting radiopharmaceuticals in nuclear medicine. Pharmacoea

Positron emission tomography (PET) for a number of services. Canberra Medical Services Advisory Committee 2000 March; Adams E, Asua J, Olasagasti JC, Erdichman M, Flynn K, Hurtado-Saracho I. Positron Emission Tomography: Experience with PET and Synthesis of the Evidence. International Network of Agencies for Technology Assessment 1999 January 4;Available from: URL:
http://www.inahta.org/inahta_web/index.asp
Robert G, Milne R. Positron emission tomography: establishing priorities for health technology assessment. The National Coordinating Centre for Health Technology Assessment 1999 July;Available from: URL:
http://www.ncchta.org/projectdata/1_project_record_published.asp?PjId=1026
http://www.ices.on.ca/webpage.cfm?site_id=1&org_id=68&morg_ id=0&gscc_id=0&item_id=1536&type=report
Minnesota Health Technology Advisory Committee. Positron emission tomography (PET) for oncology applications. Minnesota Department of Health 1999;Available from: URL: www.health.state.mn.us/htaac/pet.htm
Patient Access to Care: Cardiac Catheterization. Cardiac Care Network of Ontario 2004 September 25;Available from: URL: www.ccno.on.ca/access/waittimec.html
Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 98(19 Suppl);I151-6, 1998 November 10.

EP consultation

67

Pacemakers
bidity in patients requiring pacemakers. Pacing Clin Electrophysiol 2003; 26(2)(II); S145.
Molin F, Page P, Daoust L. Implantation of permanent pacemakers in the electrophysiology laboratory: What has it changed in a general teaching hospital?

Electrophysiologic testing and ablation
Barthina MN, Mickelsen S, Brooks C et al. Radiofrequency catheter ablation versus medical therapy for initial treatment of supraven-

Implantable cardioverter defibrillators

Appendix A: CCS Access to Care Working Group Members

Blair O’Neill, MD, (chair), Halifax, Nova Scotia
Robert Beanlands, MD, Ottawa, Ontario
James Brophy, MD, Montreal, Quebec
William Dafoe, MD, Edmonton Alberta
Anne Ferguson, Canadian Cardiovascular Society
Kevin Glasson, MD, Toronto, Ontario
Michelle Graham, MD, Edmonton, Alberta
Merrill Knudton, MD, Calgary, Alberta
David Ross, MD, Edmonton, Alberta
Heather Ross, MD, Toronto, Ontario
John Rotter, MD, Pincher Creek, Alberta
Chris Simpson, MD, Kingston, Ontario
Marcella Sholdice, Project Manager

Appendix B: Subgroup Members

Access to Care in Emergent and Urgent Situations
Blair O’Neill, MD (chair), Halifax, Nova Scotia
Eric Cohen, MD, Toronto, Ontario
Stephen Fremes, MD, Toronto, Ontario
Michael Freeman, MD, Toronto, Ontario
Karen Gulenchyn, MD, Hamilton, Ontario
Lyall Higginson, MD, Ottawa, Ontario

Access to Specialist Consultation and Non-invasive Testing
Merrill Knudton, MD (co-chair), Calgary, Alberta
John Rotter, MD (co-chair), Pincher Creek, Alberta
Jay Brophy, MD, Montreal, Quebec
Lyall Higginson, MD, Ottawa, Ontario
Bruce Josephson, MD, Halifax, Nova Scotia
Brad Munt, MD, Vancouver, British Columbia

Access to Nuclear Cardiology
Rob Beanlands, MD (chair), Ottawa, Ontario
Karen Gulenchyn; MD, Hamilton, Ontario
Marla Kiess, MD, Vancouver, British Columbia

Access to Revascularization Procedures
David Ross, MD (co-chair), Edmonton, Alberta
Michelle Graham, MD (co-chair), Edmonton, Alberta
Eric Cohen, MD, Toronto, Ontario
Stephen Fremes, MD, Toronto, Ontario

Achieving benchmarks and best practices in wait time
Merril Knudtson, MD, Calgary, Alberta
Blair O’Neill, MD, Halifax, Nova Scotia
Jack Tu, MD, PhD Toronto, Ontario

Access to Electrophysiology Services
Chris Simpson, MD, (chair) Kingston, Ontario
Paul Dorian, MD, Toronto, Ontario
Martin Green, MD, Ottawa, Ontario
Jeff Healey, MD, Hamilton, Ontario
Brent Mitchell, MD, Calgary, Alberta
Francois Phillippon, MD, Ste. Foy, Quebec
John Sapp, MD, Halifax, Nova Scotia
Larry Sterns, MD, Edmonton, Alberta
Raymond Yee, MD, London, Ontario

Access to Heart Failure Clinics
Heather Ross, MD (chair), Toronto, Ontario
Malcolm Arnold, MD, London, Ontario
Israel Belenkie, MD, Calgary, Alberta
Catherine Demers, MD, Hamilton, Ontario
Paul Dorian, Toronto, Ontario
Nadia Gianetti, MD, Montreal, Quebec
Haissam Haddad, MD, Ottawa, Ontario
Jonathan Howlett MD, Halifax, Nova Scotia
Andrew Ignaszewski, MD, Vancouver, British Columbia
Philip Jong, MD, Toronto, Ontario
Peter Liu, MD, Toronto, Ontario
Robert McKelvie, MD, Hamilton, Ontario
Gordon Moe, MD, Toronto, Ontario
John D. Parker, Canadian Cardiovascular Society
Vivek Rao, MD, Toronto, Ontario
Jean Rouleau, MD, Montreal, Quebec
Koon Tang Teo, MD, Hamilton, Ontario
Ross Tsuyuki, MD, Edmonton, Alberta
Jack Tu, MD, PhD Toronto, Ontario
Michel White, MD, Montreal, Ontario

Access to Cardiac Rehabilitation
Bill Dafoe, MD (chair), Edmonton, Alberta
Heather Arthur, Ph.D., Hamilton, Ontario
Louise Beaton, Ottawa, Ontario
Louise Morrin, Ste. Foy, Quebec
Helen Stokes, Ph.D., Edmonton, Alberta

Appendix C: Secondary Review Participating Organizations

Access to Nuclear Cardiology
Canadian Association of Nuclear Medicine (CANM)
Peter Bogaty, MD, Ste. Foy, Quebec
Ross A. Davies, MD, Ottawa, Ontario
Terrence D. Ruddy, MD, Ottawa, Ontario
Gerry Wisenberg, MD, London, Ontario

Access to Heart Failure Clinics
Canadian Cardiovascular Society (CCS) Secondary Panel for the Diagnosis and Management of Heart Failure Consensus Conference
Access to Electrophysiology Services
Canadian Heart Rhythm Society

Access to Cardiac Rehabilitation
Canadian Association of Cardiac Rehabilitation

List of abbreviations

ACC American College of Cardiology
ACS Acute coronary syndrome
AF Atrial fibrillation
AHA American Heart Association
AMI Acute myocardial infarction
CABG Coronary artery bypass graft surgery
CAD Coronary artery disease
CANM Canadian Association of Nuclear Medicine
CCS Canadian Cardiovascular Society
CHF Chronic heart failure
CMA Canadian Medical Association
CNS Clinical nurse specialist
CR Cardiac rehabilitation
CRT Cardiac resynchronization therapy
DMP Disease management program
ECG Electrocardiogram
EP Electrophysiology or Electrophysiologist
ER Emergency Room
FDG Fluorodeoxyglucose
GP General practitioner
HF Heart failure
HFS Heart failure specialist
ICD Implantable cardioverter defibrillator
LV Left ventricle
MD Medical doctor, physician
MI Myocardial infarction
MPI Myocardial perfusion imaging
NP Nurse practitioner
NSTEACS Non-ST segment elevation acute coronary syndrome
PCI Percutaneous coronary intervention
PET Positron emission tomography
SPECT Single photon emission computed tomography
STEMI ST segment elevation myocardial infarction
TTVP Temporary trans-venous pacing
VF Ventricular fibrillation
VT Ventricular tachycardia

Access to Care in Emergent and Urgent Situations
Canadian Association of Interventional Cardiologists (CAIC)
Canadian Society for Cardiac Surgeons (CSCS)

Access to Specialist Consultation and Non-invasive Testing
Canadian Cardiovascular Society (CCCS) invited 20 community cardiologist members to review the report

Access to Revascularization Procedures
Canadian Cardiovascular Society (CCS) invited 20 community cardiologist members to review the report

It’s about time! 87